УДК 53.084.823

ПРИМЕНЕНИЕ ТЕХНОЛОГИЙ СЕЛЕКТИВНОГО ЛАЗЕРНОГО ПЛАВЛЕНИЯ В ИНСТРУМЕНТАЛЬНОМ ПРОИЗВОДСТВЕ

Александр Викторович Деткин

Студент 5 курса, специалитет кафедра «Инструментальная техника и технологии» Московский государственный технический университет им. Н.Э. Баумана

Научный руководитель: А.Е. Древаль, доктор технических наук, профессор кафедры «Инструментальная техника и технологии»

1. Классификация современных аддитивных технологий.

Аддитивные технологии – это процесс объединения материалов с целью создания объекта из данных 3D – модели, как правило, слой за слоем в отличие от «вычитающих» производственных технологий.

2. Технология селективного лазерного плавления – СЛП.

СЛП – является одним из видов механизма полного плавления. В этом процессе материал (металлопорошковая композиция) получает падающий поток тепловой энергии и плавится на глубину, превышающую толщину слоя. Тепловой энергии при последующем сканировании лазером достаточно, чтобы повторно расплавить часть отвержденной структуры, таким образом, полное расплавление является очень эффективным для создания связанных структур.

Преимущества и недостатки процесса. Преимущества:

- Широкий спектр используемых материалов, в отличие от многих других процессов $A\Pi$.
 - Увеличение жесткости изделий при снижении их массы.
- На точность и шероховатость финишной поверхности сильно влияют параметры процесса и размер частиц порошка.
- Экономия материалов, так как СЛП в силу своей специфики является практически безотходным производством.
- Применение материалов с низкой теплопроводностью позволяет повысить точность, поскольку формирование ванны расплава и затвердевание оказываются более управляемыми процессами, а приращение изделия минимально при низкой теплопроводности.

Недостатки:

- В большинстве процессов металлического PBD (Powder Bed Fusion) требуется применение опорных элементов.
- Из-за высоких остаточных напряжений, возникающих во время обработки металлов, необходима установка опорных конструкций, чтобы не допустить чрезмерного коробления изделия. Это означает, что постобработка металлических изделий АП может быть дорогой и трудоемкой.
- Исходные материалы, используемые в этих процессах, как правило, дают 3-4% усадки, что приводит к деформации изделия.

- В процессах PBD общее время построения изделия гораздо больше, чем в других производственных процессах АП.
 - 3. Параметры технологического процесса СЛП.

В технологии плавления порошков в сформированном слое PBD, технологические параметры можно разделить на 4 части:

- Параметры лазера мощность лазера, размер пятна, длительность импульса, частота
- Параметры сканирования скорость сканирования, шаг сканирования, последовательность сканирования
- Параметры порошка форма частиц, размер частиц, насыпная плотность порошка, толщина слоя, свойства материала и т.д.
- Температурные параметры температура слоя порошка, температура подаваемого порошка, равномерность распределения температуры.
- 4. Влияние режимных параметров на сплавляемый материал в технологии СЛП примере титанового сплава TiAl6V4.
 - Дефекты.
 - Параметры технологического процесса
- Исследование физико-механических свойств образцов Ti6Al4V, полученных селективной лазерной плавкой.
 - Влияние плотности энергии на устранение остаточной пористости.

Литература

- 1. Лазерные аддитивные технологии в машиностроении: учебное пособие / Под ред. *А.Г. Григорьянца*. – Москва: Издательство МГТУ им. Н.Э. Баумана, 2018 – 278с.
- 2. Технология аддитивного производства: Γ ибсон Я., Pозен Д., Cтакер E., / Под ред. ТЕХНОСФЕРА, 2016-656стр.
- 3. Material Science & Engineering, Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting: F/ *Bartolomeu*, S. Faria, O. Carvalho/